
Type-directed
Prompt Construction
for LLM-powered
Programming Assistants

Andrew
Blinn

Kevin
Li

Cyrus
Omar

October 2023 Experience ReportFPLab
@ UMich

1

Hazel Demo:
Todo MVU

2

Backup in
case of
technical
difficulties

3

Intro
- Large language models have changed

the landscape for code completion

- But how do they get fed? Poor or missing
information can lead to hallucination

- We have a wealth of semantic information available
that can be used to inform and constrain generation

4

LLMs vs
Types

5

Types & LLMs:
Opportunities for Intervention
- Before prompting

Types informing prompt creation
- After prompting

Types for validation + correction

6

Types & LLMs:
Opportunities for Intervention
- Before prompting

Types informing prompt creation
- After prompting

Types for validation + correction
- During prompting (Future work)

Types constraining productions by-token
- Between prompting (Future work)

Types informing multi-step strategies

7

Prompt
Imagineering

8

Prompt Construction: Challenges

- Limited context window length;
can’t just throw everything in

- Per-token costs

- Even with larger windows, models aren’t
equally attentive to the whole length

9

Prompt Construction: Challenges

- Limited context window length;
can’t just throw everything in

- Per-token costs

- Even with larger windows, models aren’t
equally attentive to the whole length

- Need to distill pertinent data

10

Prompt Construction: Approaches

- Basic approach:
- Truncate current file up to caret to context window length

- Current approaches: Heuristics for related code:
- Last active tabs (Github Co-pilot)
- Imports via dependency analysis (RepoCoder: Zhang et al. 2023)
- RAG: Vector databases to retrieve ‘similar’ code

11

Running Example: Update

12

- We’re going to try to get our assistant to complete
the entire core update logic for our Todo app

- We use this example instead of the view function
shown you as it’s easier to evaluate via unit tests

- We’ll use to versions: An easier, shorter one with
helpers provided in sketch, and a harder version
without helpers

Complex Version

Simpler Version

Without prompt engineering

13

- The model doesn’t know hazel. Hence: Frankencode

Complex Version

Simpler Version

Without type information
- May do okay if everything is in a small single file
- But otherwise, no great way to guess names

14

Ground truth Hallucinations

Hazel LLM
Assistant

15

LLMs for code completion:
The model landscape

Commercial APIs

- Smart (out of the box)
- Convenient

Local models

- Flexible
- Reproducible

16

- We’re PL people, not ML people.
We’re mostly using models as black boxes

LLMs for code completion:
The model landscape

- For our initial experiments, we picked
OpenAI GPT4 via Microsoft Azure

- Quickest way out-of-the box to start
generating somewhat syntactically &
semantically reasonable code

17

Hazel LLM Assistant:
Conversational Architecture
System Message: Generic Instructions

User Message: Program Sketch

Assistant Message:
Suggested completion

Language Server: Type Information

Language Server: Type errors, if any

Assistant Message:
Corrected completion, if necessary

18

Programmer

Language Server

Language Model

Hazel LLM Assistant:
Conversational Architecture
System Message: Generic Instructions

User Message: Program Sketch

Assistant Message:
Suggested completion

Language Server: Type Information

Language Server: Type errors, if any

Assistant Message:
Corrected completion, if necessary

19

Programmer

Language Server

Language Model

Hazel LLM Assistant:
Conversational Architecture
System Message: Generic Instructions

User Message: Program Sketch

20

Assistant Message:
Suggested completion

Language Server: Type Information

Language Server: Type errors, if any

Assistant Message:
Corrected completion, if necessary

Programmer

Language Server

Language Model

Hazel LLM Assistant:
Conversational Architecture
System Message: Generic Instructions

User Message: Program Sketch

Language Server: Type Information

21

Assistant Message:
Suggested completion

Language Server: Type errors, if any

Assistant Message:
Corrected completion, if necessary

Programmer

Language Server

Language Model

Hazel LLM Assistant:
Conversational Architecture
System Message: Generic Instructions

User Message: Program Sketch

Assistant Message:
Suggested completion

Language Server: Type Information

22

Language Server: Type errors, if any

Assistant Message:
Corrected completion, if necessary

Programmer

Language Server

Language Model

Hazel LLM Assistant:
Conversational Architecture
System Message: Generic Instructions

User Message: Program Sketch

Assistant Message:
Suggested completion

Language Server: Type Information

Language Server: Type errors, if any

23

Assistant Message:
Corrected completion, if necessary

Programmer

Language Server

Language Model

Hazel LLM Assistant:
Conversational Architecture
System Message: Generic Instructions

User Message: Program Sketch

Assistant Message:
Suggested completion

Language Server: Type Information

Language Server: Type errors, if any

Assistant Message:
Corrected completion, if necessary

24

Programmer

Language Server

Language Model

System Message (Always the same)

25

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Task Description

- Syntax Specification

- Input/Output Examples (Few-shot)

System Message (Always the same)

26

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Task Description

 - Syntax Specification
- Input/Output Examples (Few-shot)

System Message (Always the same)

27

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Task Description
- Syntax Specification

- Input/Output Examples (Few-shot)

System Message (Always the same)

28

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Task Description
- Syntax Specification
- Input/Output Examples (Few-shot)

System Message:
Preliminary Results

29

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- We evaluated completions via 12 held-out unit tests.

- We experimented by holding out the major constituents
of the prompt, performing 10 trials each at default
temperature

Sketch

Reference Solution

System Message:
Preliminary Results

30

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- All parts included
10/10 parsed, 4.2/12 tests passing (σ 1.9)

- No Input/Output Examples
 1/10 parsed, 0 tests passing

- No Syntax Specification
 4/10 parsed, 0 tests passing

- No Task Description
 7/10 parsed, 2.7/12 tests passing (σ 3.6)

Sketch

Reference Solution

Type-Directed
Prompting
In Hazel

31

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Language Server (Varies per prompt)

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

32

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Programmer

33

Programmer

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Language Server (Varies per prompt)

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

Language Server

34

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

Language Server

35

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

Language Server

36

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

Language Server

37

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

Language Server

38

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

Language Server

39

Language Server

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions

Language Server

40

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Programmer

- Program Sketch (around Cursor)
- Expected Type (at Cursor)
- Typing Context (at Cursor)
- Extracted Relevant Definitions Language Server

41

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Language Model

And after a time…

Typed Prompt: Prelim Results

42

Completing the update function (complex version)

- Simple version:
 with types 10/10 parsed, 8.0/12 tests passing (σ 4.1)
 w/o types 9/10 parsed, 0/12 tests passing

- Complex version:
 with types 10/10 parsed, 4.2/12 tests passing (σ 1.9)
 w/o types 10/10 parsed, 0/12 tests passing

Simple version

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Error
Correction

43

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Error
Correction

44

The language server intercepts
responses and sends any errors
back to the LLM

Error
Correction

45

The language server intercepts
responses and sends any errors
back to the LLM

Interestingly, this provided us with
impetus to write better, more human
readable error messages for hazel

Error
Correction

46

The language server intercepts
responses and sends any errors
back to the LLM

Interestingly, this provided us with
impetus to write better, more human
readable error messages for hazel

47

Language Model

Error correction round
INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

48

Language Server

Language Model

Error correction round
INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

49

Language Server

Language Model

Error correction round
INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Ongoing
& Future
Directions

50

Future Directions
● Language Server Tweaks:

○ Replace fixed examples with type-specific ones when available
○ Move towards integrating lightweight program synthesis: Follow arrow types in

context to find functions linking available input types and desired output types

● Per-token type correctness by construction:
○ Why we are using hazel: Always-available type-directed completion
○ Synergies with Token masking techniques; (Jsonformer, CFGs in llama.cpp)
○ See: Monitor-Guided Decoding (Agrawal et al 2023) & Repilot (Wei et al 2023)

● Dynamic information
○ Smyth (Lubin et al) - Type & example directed synthesis via backwards

unevaluation: Feed hole-specific value specs to the model, not just types

51

Dynamic
Strategies &
Collaboration

52

Dialogue with Language Server

● Our system so far consists of a statically-structured
dialogue between user, LLM, and language server

● But what if the LLM had the ability to be more
agentic? What if our dialogs could be dynamic?

● To carry out multi-stage plans to accomplish more
than just code completion, we need to find ways to
get models to query users and language servers

53

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

Programming Strategies

● LaToza et al (2020) have developed a language,
Roboto to express semi-formal programming
strategies based on real programmer practices

● Roboto is executable, but instead of bottoming out
at machine instructions, it executes down to a trace
of natural-language instructions to programmers, as
a aid to help keep on task

54

Explicit Programming Strategies
Thomas D. LaToza, Maryam Arab,
Dastyni Loksa, Amy J. Ko

Dialogue with Language Server

● What if our language server had a library of
type-directed strategies a model could try to match
to a given task?

● The LS would manage execution, which would
bottom out to a trace of prompts to the LLM, to
which it would be expected to return one or more
edit actions to attempt accomplish that goal.

55

INSTRUCTIONS

COMPLETION

ERRORS

CORRECTION

SKETCH

TYPES

56

Add a priority to each TODO item

Maybe try the following generic strategy:
 - Find the appropriate type definition
 - Change the definition to support the change
 - For all type errors created
 - Attempt a fix
 - Ask the language server if the fix is correct
 -If so, move on to the next type error
 - Otherwise, ask the user for clarification

I will try the following concrete strategy:
 - I have found the type definition Todo
 - For my change, Execute: Command (Diff)
 Type todo = (string, bool)
 Type todo = (string, bool, num)
Request(@LanguageServer): I need a list of all type errors

Command(Diff) has been executed successfully.
There are now 12 type errors.
The first error is:

Please submit a fix

… and so on

Takeaways

- Possible with prompt engineering to get decent
LLM completions in at least one niche language

- Type information provides effective guide rails
to collate program sketches in some situations

- There is so much to do; let’s talk!

57

Questions?

