
An Integrative Human-Centered Architecture
for Interactive Programming Assistants

Andrew Blinn
University of Michigan
Ann Arbor, MI, USA
blinnand@umich.edu

David Moon*
University of Michigan
Ann Arbor, MI, USA

dmoo@umich.edu

Eric Griffis*
University of Michigan
Ann Arbor, MI, USA

egriffis@umich.edu

Cyrus Omar
University of Michigan
Ann Arbor, MI, USA

comar@umich.edu

Abstract—Programming has become a collaboration
between human programmers, who drive intent, and
interactive assistants that suggest contextually relevant
editor actions. There is considerable work on sugges-
tion synthesis strategies—from semantic autocomplete
to modern program synthesis, repair, and machine
learning research. This diversity of strategies creates a
need for an integrative, human-centered perspective on
the problem of programming assistant design that (1)
confronts the problem of integrating multiple synthesis
strategies, fed by shared semantic analyses capable
of operating on program sketches, and (2) centers
the needs of the human programmer: comprehending,
comparing, ranking, and filtering variously-generated
suggestions, and sometimes participating in a synthe-
sizer’s search by supplying added expressions of intent.

This paper contributes a conceptual architecture and
API to guide assistant designers in confronting these
integration and human-centered design challenges. We
instantiate this architecture in three prototype end-
to-end assistant designs. First, two implementations,
developed for the Hazel programming environment,
emphasizing understudied design foci including conti-
nuity, explainability, human-in-the-loop synthesis, and
the integration of multiple analyses with multiple
synthesis strategies. Secondly, a formalized assistant
founded in programming language theory, serving as
a worked-through model for precisely specifying and
proving sensibility of suggestions.

I. Introduction
A programming assistant is an editor service that ana-

lyzes the editor state (consisting primarily of a program
sketch, perhaps with additional data such as history) to
present edit action suggestions to a human user and help
the user select an action consistent with their broader
intent [1–3]. Programming assistants promise to improve
programmer productivity by automating tedious tasks.
They may also improve software quality by helping pro-
grammers avoid mistakes and, in some cases, guarantee
that the suggestions satisfy programmer-specified correct-
ness constraints. Moreover, they can reduce knowledge

*Preliminary Exam Content Note: This paper is an extended
version of the short paper published last year at VL/HCC 2022. All
of the writing is mine; David Moon and Eric Griffis are listed as co-
authors as they share equal credit with myself for the design and
implementation of the Hazel Live assistant, one of the three featured
prototypes embodying the architecture described in this paper.

gaps by surfacing structures and idioms that a program-
mer might not have otherwise discovered [4–6].

Given these benefits, it is unsurprising that simple
assistants like code completion and “hotfix” systems are
ubiquitous in modern programming environments, com-
peting in frequency with manual editor actions like code
insertion and deletion [7]. There has in turn been substan-
tial research interest [8] in techniques that can synthe-
size better suggestions, including program synthesis using
types [9], examples [10], program sketches [11], edit history
[12], demonstrations [13], and logical constraints [14] to
generate “hole completions” [15, 16]. Github Copilot [17]
is one of several recent efforts focused on synthesizing long-
form completions via machine learning techniques that
learn idioms from a vast corpus of real programs [18–21].

While much of this research has focused on the un-
derlying synthesis algorithms, there has recently been a
renaissance of human-centered approaches reminding us
that the human programmer ultimately remains the driver
of intent and the arbiter of correctness. Consequently,
the interfaces through which the human communicates
purpose and considers suggestions must be designed with
cognitive costs in mind. For example, many of these
synthesis techniques are capable of substantial associative
leaps, carrying with them concerns about explainability
and the costs of validating correctness. In addition, code
search spaces can become large, leading either to lengthy
synthesis delays or overwhelming numbers of suggestions.
Concerns like these have led to work on interpretable
synthesis [22] and interactive search space exploration [23].

We seek to organize this often-overwhelming diversity of
efforts by developing an integrative architecture for pro-
gramming assistant designers that confronts the problem
of integrating a wide variety of synthesis techniques (and
requisite program analyses) while centering the needs of
the human user. Each component of this architecture is
the subject of ongoing research, as is the overall design
problem. We demonstrate that our architecture can serve
to characterize and situate some existing assistant designs.
We then describe our ongoing work on two end-to-end
prototypes intended to emphasize understudied design
criteria, namely continuity of service, integration of mul-
tiple shared analyses with multiple synthesis strategies,

Fig. 1: Integrative human-centered assistant architecture diagram detailing suggestion dataflow and the user interaction
loop

explainability, independent semantic ranking techniques,
and interfaces for integrating the human into an incremen-
tal search.

We go on to present a third prototype, a judgemental
formalism of an assistant rather than an implementa-
tion, building on the Hazelnut editor calculus[24, 25]. This
serves dual purposes. First, it grounds our architecture
and attendant vocabulary in the mathematical study of
programming language semantics, which we hope may
serve as bridge between language researchers and those
implementing and studying programming interfaces. Sec-
ond, we believe that programmers are best served by
assistants capable of clear and concrete claims as to the
correctness and sensibility of their suggestions. Deciding
what it means for a suggestion to be sensible is itself a
significant design issue[26], one we do not intend to resolve.
Rather we select a simple characterization—that suggested
actions should, at least, preserve meaningfulness across
edit states, and do no harm, in the sense of not increasing
the number of static errors—and offer our articulation and
proof of this sensibility theorem as a paradigm for further
work.

Our intention is not to make empirical claims about the
specific design choices made in these prototypes. Indeed,
there is much work to be done before successors to these
designs can claim to improve overall programmer produc-
tivity. Rather we present these prototypes as illustrations
of the proposed integrative architecture, which we hope
will help organize and provide vocabulary for the assistant
design community, and to draw attention to understudied
but important design criteria that we hope will draw more

interest from the community.
II. Architectural Overview

Essentially all program editors support a basic inter-
action loop whereby a human user triggers editor actions,
resulting in an updated editor state [24]. The editor state is
presented to the user alongside various editor services that
provide supporting feedback, e.g. syntax highlighting and
type information [27]. This feedback requires performing
language-aware analyses. Because the same analyses might
be relevant to multiple services and across multiple editors,
analyzers are typically collected behind a shared language
server interface [28].

Analyses made available by a language server also feed
the programming assistant (Fig. 1). An important consid-
eration, particularly relevant to programming assistants,
is that these servers must be able to cope with program
sketches, i.e. editor states that are not yet syntactically
valid or complete, or where there are static errors [24, 29].
When unable to do so, this can lead to gaps in ser-
vice. Consequently, there has been much effort put into
heuristics such as error-recovery and incremental parsing
[28, 30, 31] or in automatic hole insertion [24, 29]. In the
context of a programming assistant, it is exactly these
incomplete states where assistance is most necessary, so
gaps in the availability of the analyzers offered by the
language server must be avoided whenever possible.

Turning now to the assistant itself, we see a dataflow
beginning with a collection of Synthesizers which each
generate sets of edit action suggestions with accompanying
explanatory metadata, as expressed in these notional type
definitions:

Fig. 2: The Hazel Assistant: (2.A): Completion menu for an expression hole of type Bool. The assistant is not limited
to expression completion; it can also use type inference to refine type annotations (2.B) and patterns (2.C). (2.D):
Wrapper synthesizer being used for code repair. Both the first and last options result in fewer errors, but the last
(selected) is ranked down as it results in a less specific type. (2.E): Converter synthesizer targeting numeric type errors

type Suggestion = (EditAction , Explanation)
type Synthesizer = LanguageServer -> Set(Suggestion)

For example, the standard Java code completion Synthe-
sizer generates field name suggestions by requesting the
type of the target expression from the language server, and
variations of that synthesizer also incorporate edit history
[32], examples [6], or abbreviations [33].

Generated suggestions are collated and assessed by our
third layer, the Scorers, resulting in reports used by the
Ranker and Presenter to convey suggestions to the user:
type Scorer = Suggestion -> Score
type ScoreReport = Map(Scorer, Score)
type RankedSuggestion = (Suggestion , RankExplanation)
type Ranker = Map(Suggestion , ScoreReport)

-> List(RankedSuggestion)

A variety of ranking and sorting methods have been pre-
viously considered [4] including alphabetically, by-type,
by-relevance, by prevalence in a corpus, and via logical
grouping. Explanation of suggestions is under-researched
in programming assistants, but has been recognized as
increasingly important [34] and explainable AI is a bur-
geoning topic [35].

Finally, the ranked suggestions are presented to the user
together with various affordances, i.e. assistant actions,
for updating the assistant state, e.g. to sort, filter, or
interact with the components just described. While in-
teraction with suggestions is often simply selection from
a menu, more involved interaction models include active
code completion via palettes [36], interactive example
augmentation [23], and work on the Read-Eval-Synthesize-
Loop [37], which presents a Read-Eval-Print-Loop-inspired

interaction model for driving human-in-the-loop synthesis.

III. Hazel Assistant
The Hazel programming environment [24] provides a

compelling setting for explorations in programming as-
sistant design. It is a structure editor with a formalized
editor action semantics, and it avoids the language server
gap problem described above, providing continual static
and dynamic analyses even for program sketches [25].

The Hazel Assistant shown in Fig. 2 is a working proto-
type of a completion and repair assistant for Hazel, serving
as a simple end-to-end instantiation of our architecture.

The prototype integrates various Synthesizers that focus
on using cursor-local syntactic and static Analyzers to
suggest local code transformations. As we are operating on
a program sketch–a program with explicit syntactic holes–
this task characterization covers both code completion
(when the term is an empty hole) and code repair (where
the term has a non-empty hole around it, indicating a
type error). For type-correct terms, the assistant still pro-
vide suggestions for possible transformations, providing
lightweight ambient awareness of implementation alterna-
tives.

• Type Analyzer: Determines the expected (analytic)
type and current (synthetic) type at the cursor

• Binding Analyzer: Collects bound variables and
uses

• Syntactic Context Analyzer: Manages an ascend-
ing list of enclosing syntactic forms, rooted at the
cursor term and including its parent and ancestors

Fig. 3: Hazel Live Assistant: Here we collaborate with the Smyth synthesizer to write a function to add Peano-
representation integers. Here we are working around the fact that the Smyth synthesizer supports only algebraic data
types, which are not supported by Hazel; we translate the successor constructor to ”+ 1” and destructure a successor
by subtracting 1. (3.1) portrays a stubbed-out function with two user-provided examples. (3.2-3.4) show the process
of stepping through a synthesis refinement tree: The user is offered a menu of options; at these stages there is only
one suggested completion. The black panel displays the unevaluated constraints which must be satisfied. (3.5) shows a
finished but overspecialized solution; the user resolves this by stepping out of synthesis and adding two more examples.
(3.6-3.8) represent the result of deleting the ”x2” reference and resuming synthesis. This time the user has more options;
either casing on x1 or x2 (3.6), and adding 1 before or after the recursive call (3.8). (3.9) shows the completed function

These Analyzers are queried by various Synthesizers:
• Inserter Synthesizers: These implement basic

type-aware code completion, ignoring cursor term
content and suggesting a wholesale replacement. For
example, at a hole with expected type Bool, the Literal
Synthesizer suggests true and false (Fig. 2.A)

• Wrapper Synthesizers: These take into account the
type of the current term to suggest wrapping it within
a larger term. For example the application synthesizer
may suggest wrapping a term by applying a function
which consumes that term’s type and produces the
expected type

• Converter Synthesizers: These suggest conversions
between types, e.g. Float/Int conversions (Fig. 2.E)

Each synthesizer emits a set of suggestions, each
equipped with an explanation related to the synthesizer
that suggested it. Suggestions are pooled together and fed
to the Scorers, who rate each suggestion, possibly with
further Language Server consultation. The Hazel Assistant
currently employs the following Scorers:

• Error Delta Scorer: Determines the integer change
in the number of static errors (Fig. 2.D-E)

• Idiomaticity Scorer: Performs a heuristic assess-
ment of the idiomaticity of the result, based on a
comparison against a fixed list of non-idiomatic syn-
tactic patterns such as using a lambda directly in an
application

• Type Specificity Scorer: Compares the current and
resulting types. This is positive if the resulting type

is more specific, such as moving from ? (unknown) to
Int

• Syntax Conservation Scorer: Compares the string
representation of the current term and its suggested
replacement via Levenshtein distance

Each suggestion’s scores are collected in a ScoreRe-
port and passed to the Ranker, which uses a set score
weighting to sort the set of suggestions. The Presenter
surfaces the ranked suggestions as a scrollable list. On
hover, a suggestion’s explanation is shown as well as an
explanation for the ranking in terms of the individual
scores. Selecting a suggestion triggers the corresponding
EditAction and closes the interaction loop. Interactions
with the Presenter, e.g. moving up and down, are Assistant
Actions and update only the Assistant State.

IV. Hazel Live Assistant
The Hazel Live Assistant extends the Base Assistant

by integrating with a more sophisticated external type-
and-example-directed synthesizer, Smyth [38]. To support
human-in-the-loop synthesis it employs a more complex
interaction, with the Smyth synthesizer incorporating non-
trivial retained state.

In the Hazel editor, all expressions, including incomplete
ones, have well-defined evaluation results. Via a process
called live evaluation [25], empty holes are propagated
as placeholders into the evaluated result, and ill-typed
expressions are partially evaluated by placing them in non-
empty holes and evaluating around them. Smyth addition-
ally uses live unevaluation to propagate the values from

assertions backward through the program as additional
synthesis constraints. Thus the Live Assistant demon-
strates extending the reach of Analyzers into program
execution.

In the small, the Live Assistant behaves similarly to the
Base Assistant. When activated on a hole, it presents a
list of candidate hole fillings which may be navigated via
the up/down arrows. Each entry in this case is not only
type compatible, but represents a refinement step which,
possibly after further refinements, may result in a term
satisfying the provided assertions.

Like the Base Assistant, the Live Assistant explains sug-
gestions. The rows of the black boxes in Figure 3 represent
constraints. The column marked ’=’ indicates the values
the current term must take to satisfy the assertions when
the variables take on the values indicated in the other
columns. Unlike the Base Assistant, the Live Assistant is
a suggestion synthesizer that maintains nontrivial state.
If the user accepts a non-terminal refinement – that is,
a refinement which contains holes – the suggestion is
not immediately committed. Rather, the suggestion menu
advances to the first contained hole, stepping deeper
into the refinement tree. This UI expedites user-directed
backtracking, allowing easy exploration of forks in the
synthesis process by binding the left/right arrow keys to
forward/backward movement in the refinement tree.

This process of flexible exploration is also exploited in
the synthesis back-end, as the refinement tree is lazily
generated, allowing the possibility of the human in the
loop manually resolving chokepoints where the constraints
in the code itself do not sufficiently restrict the search
space.

V. Paperclip 📎 Calculus
Here we present a different kind of instantiation of the

above architecture: a mathematical formalization of an
assistant rather than an implementation, which we term
the Paperclip calculus in honor of Clippy, Microsoft’s
erstwhile interactive digital assistant [39]. Though this
descent into formalism contrasts to the human-factors
emphasis of the previous prototypes, we contend that it
is essential—particularly as suggestion synthesis draws on
more complex methods—that we can offer concrete and
specific assurances to users about the meaningfulness of
synthesized suggestions.

This prototypical formalism is not intended to offer
the last word on what it means for suggestions to be
sensible, but instead to serve as a foundational example
of defining and demonstrating correctness of an assistant
according with our archicture, and to serve as a framing for
discussing some design decisions that arise in the process.

A. Review: The Hazelnut Editor Calculus
This time, instead of extending the Hazel editor, we

extend its core calculus, Hazelnut as developed by Omar et
al. [24], which provides the definitions of the basic typing

and action judgements we’ll be using. We extend this core
by adding binary products; the semantics of which are
appended as section X:

HTyp τ ::= 1 | τ + τ | τ × τ | τ → τ | LM
HExp e ::= () | (e, e) | π1 e | π2 e | inl(e) | inr(e)

| case(e, x.e, y.e) | x | λx.e | e(e) | LM | LeM
Fig. 4: An extension of Hazelnut’s syntax of H-types and
H-expressions. Metavariable x ranges over variables.

Hazelnut is a calculus of editor actions, and provides
meta-theorems circumscribing the consequences of these
actions; in particular, that each resulting state is not
only syntactically well-formed (via empty holes) but also
that what would otherwise be ill-typed expressions are
enclosed in Lnon-empty holesM. Hazelnut also internalizes
▷cursor◁ position into the syntactic model, via a syntactic
zipper[40], enabling us to suggest cursor positions in the
same way as we suggest syntactic transformations. For our
purposes we restrict ourselves to the following subset of the
action calculus, given here:

Action α ::= 🔨 ê | 🗑 del | ⬇ move child
ActionList ᾱ ::= · | α; ᾱ

Fig. 5: Syntax of actions (adapted from Hazelnut [24])

Our relevant actions include deletion 🗑 del , movement
to the first child of an expression ⬇ move child , se-
quencing two actions, and a new construction action 🔨 ê
for replacing an empty hole with an arbitrary well-typed
expression (in Hazelnut proper, construction is done incre-
mentally, which we depart from here for expediency). The
Action Sensibility metatheorem expresses the fact that all
actions on meaningful edit states result in meaningful edit
states. We illustrate by means of the below rule, which
defines our new construction action 🔨 ê :

ConstructExp
α = 🔨 ê′ Γ ⊢ ê′⋄ ⇐ τ

Γ ⊢ ▷LM◁ α−−→ ê′ ⇐ τ

The conclusion of this rule (below the line) states that,
given some typing assumptions Γ, and an empty hole LM
under the ▷cursor◁ , our action α replaces that hole with a
new cursored expression ê′ satisfying τ , the expected type
at that position. The premise of the rule (Γ ⊢ ê′⋄ ⇐ τ)
indicates that this action judgement holds precisely when
the new expression (with the cursor removed⋄) analyzes
against τ .

B. Suggestion Synthesis Judgement
We are now in position to define a formal judgement

to characterize suggestion synthesis. First a note on a
vocabulary collision: Hazelnut uses a bidirectional typing
system[41], where each syntactic position is either analytic
(the parent form imposes an expected type) or synthetic

(the type is determined by the expression itself), assuming
a typing context Γ mapping variables to types. This sense
of ’type synthesis’ is related but distinct from our use of
’suggestion synthesis’ to denote the process of generating
suggestions.

In keeping with Hazelnut’s type system, we have two
forms of our suggestion synthesis judgement, expressed
symbolically in the following figure. Recall that our ex-
pressions ê bake in a cursor, so Γ and τ below should be
interpreted as the static information contextual to that
position:

Γ ⊢ ê ⇒ τ 📎 A ê synthesizes τ , suggesting actions A

Γ ⊢ ê ⇐ τ 📎 A ê analyzes against τ , suggesting A

Fig. 6: Suggestion Judgement Forms; here A is a set of
Hazelnut action sequences

Now we must decide what it means for a suggested
action to be sensible. To set a bar, we want suggested
syntax to be well-formed. Type correctness may also seem
like a given, but note that it is not completely obvious
where this kind of sensibility should be enforced: Do
we pursue correctness-by-construction, insisting that our
synthesizers produce only type-correct suggestions? Or are
we more liberal in our synthesis, and use sensibility either
as a hard filter on suggestions, or simply as a ranking
criteria?

For simplicity, we choose correctness at time of syn-
thesis, and claim that a suggestion is sensible precisely
when (1) its action can be performed successfully and
thus preserves static meaningfulness in Hazelnut’s sense,
and (2) that the number of type errors (non-empty holes,
denoted #e) is not increased:

Theorem 1 (Suggestion sensibility):
• For all Γ, ê, τ,A where Γ ⊢ ê⋄ ⇐ τ and

Γ ⊢ ê ⇐ τ 📎 A there exists an ê′ such that for all
α ∈ A we have Γ ⊢ ê

α−−→ ê′ ⇐ τ and #e⋄ ≤ #e′⋄

• For all Γ, ê, τ,A where Γ ⊢ ê⋄ ⇒ τ and
Γ ⊢ ê ⇒ τ 📎 A there exists an ê′ and a τ ′ such that
for all α ∈ A we have Γ ⊢ ê ⇒ τ

α−−→ ê′ ⇒ τ ′ and
#e⋄ ≤ #e′⋄

In the following section we develop the rules to fully
articulate the suggestion judgment, and in the appendix
(XII) we prove Theorem 1.
C. Analytic Suggestion Judgement: Completions

The first of three base cases for the analytic suggestion
judgement, the SuggestCompleteAna rule details the syn-
thesis of basic code completions, corresponding to the case
where the cursor is on an empty hole:

SuggestCompleteAna

Γ ⊢ ▷LM◁ ⇐ τ 📎 Intros(τ) ∪ Elims(Γ, τ)

This rule collects the results of two synthesizer meta-
functions, the Intros and Elims. Such meta-functions take
static information localized to the cursor—here some sub-
set of the expected type τ , the typing context Γ, and the
indicated subexpression e—to produce a set of suggested
actions.

First, the Intros synthesizer below suggests introduction
forms; for example, if the expected type τ is a product
τ1 × τ2, it suggests constructing a pair of holes, advancing
the cursor to the first hole (▷LM◁ , LM):

Intros(τ) =

{🔨 ▷()◁ } τ = 1
{🔨 λx. ▷LM◁ } τ = τ1 → τ2

{🔨 (▷LM◁ , LM) } τ = τ1 × τ2

{🔨 inl(▷LM◁) , 🔨 inr(▷LM◁) } τ = τ1 + τ2

Intros(1) ∪
Intros(LM × LM) ∪
Intros(LM + LM) ∪
Intros(LM → LM) τ = LM

Second, the Elims synthesizer collates three genres of
suggestion, corresponding to Hazelnut’s elimination forms:

Elims(Γ, τ) = Case ∪ Var(Γ, τ) ∪ AP(Γ, τ)

First, Case suggests simply inserting a case expression:

Case = {🔨 case(▷LM◁ , x.LM, y.LM) }
Second, Var suggests referencing a variable drawn from the
context Γ of a type τ ′ consistent with expected type τ :

Var(Γ, τ) = {🔨 ▷x◁ | x : τ ′ ∈ Γ, τ ∼ τ ′}

Finally, our most complex synthesizer, AP essentially
performs a deep search of the context Γ, looking for
variables with compound types which can be eliminated
down to the expected type τ . In particular, it identifies
(nested) product and arrow types which, after appropriate
projections and function applications, produce the desired
type. For example, if we had f : A → (B × C) in Γ, and
our expected type was τ = B, AP would suggest π1f(LM)
as a completion.

AP(Γ, τ) = {🔨 ▷e◁ | x : τ ′ ∈ Γ, Γ ⊢ x⇝ e ⇐ τ , τ ∼ τ ′}

This synthesizer requires the specification of an additional
judgement form, used to characterize its suggestions:

Γ ⊢ e⇝ e′ ⇐ τ e ap-projects to e′ analyzing to τ

More verbosely, the ap-projection judgement asserts that
e, applied to 0 or more holes, and projected 0 or more
times, yields an expression e′ analyzing against τ . The
base case rule for this judgement simply says that the

judgement is already satisfied by an expression of the
provided type.

AP-Base
Γ ⊢ e ⇐ τ

Γ ⊢ e⇝ e ⇐ τ

Otherwise, if the input expression is a product or a
function, and when projected or applied to a hole, the
resulting expression satisfies the judgement, then the orig-
inal expression also satisfies the judgement.

AP-App
Γ ⊢ e ⇒ _ → _ Γ ⊢ e(LM)⇝ e′ ⇐ τ

Γ ⊢ e⇝ e′ ⇐ τ

AP-Proj1/2
Γ ⊢ e ⇒ _ × _ Γ ⊢ π1/2e⇝ e′ ⇐ τ

Γ ⊢ e⇝ e′ ⇐ τ

(Note that this unlike the other judgements is a non-
deterministic, non-algorithmic characterization; to imple-
ment this a particular search strategy would need to be
chosen)

D. Analytic Suggestion Judgement: Repair & Modification
Our remaining two base cases detail the synthesis of

repairs and of other modifications. These correspond to
the cases where the cursor is either on a non-empty hole,
or some other non-hole expression.

When the cursor is on a non-empty hole, we suggest
repair options which transform the contained expression
into one agreeing with the expected type. For this we
substantially defer to the third and final base case, as
shown in the rule’s premise:

SuggestRepairAna

Γ ⊢ ▷e◁ ⇐ τ 📎 A

Γ ⊢ ▷LeM◁ ⇐ τ 📎 { ⬇ move child ;α | α ∈ A}

The final base case describes suggestions which modify
an existing expression in-place, either by replacing it
wholesale by an expression of the appropriate type, or
wrapping it in a function application.

SuggestModifyAna
e ̸= LM e ̸= L_M

Γ ⊢ ▷e◁ ⇐ τ 📎 Wraps(Γ, e, τ) ∪ Replaces(Γ, τ)

The Replaces synthesizer suggests a compound action: a
deletion followed by another action α drawn from all the
possible suggestions for the resulting empty hole ▷LM◁ :

Replaces(Γ, τ) = { 🗑 del ;α|α ∈ A, Γ ⊢ ▷LM◁ ⇐ τ 📎 A }

The Wraps synthesizer suggests wrapping the indicated
subexpression ▷e◁ with a function f drawn from Γ pro-

vided it has input and output types consistent with the
context and contained expression:

Wraps(Γ, e, τ) =
{🔨 f(▷e◁) | Γ ⊢ e ⇒ τe, f : τin → τout ∈ Γ,

τin ∼ τe, τ ∼ τout}

E. Suggestion Judgement: Zipper Cases

Having described our suggestion synthesizers with re-
spect to the scope and typing information present at the
cursor, it remains to detail our inductive (zipper) cases,
which describe how that information is propagated down
the syntax tree to the cursor. There is at least one such
case for each syntactic position of every form. These rules
make use of some subsidiary typing judgements defined in
[24], and indeed have a close correspondence to the rules
given there, as those are ultimately the rules used deter-
mine action and hence suggestion sensibility. First have
the core rules determining the propagation of expected
types through function literals and applications:

SZLam
τ ▶→ τ1 → τ2 Γ, x : τ1 ⊢ ê ⇐ τ2 📎 A

Γ ⊢ λx.ê ⇐ τ 📎 A

SZAppR
Γ ⊢ e1 ⇒ τ1 τ1 ▶→ τ2 → τ Γ ⊢ ê2 ⇐ τ2 📎 A

Γ ⊢ e1(ê2) ⇒ τ 📎 A

SZAppL
A∗ = {α ∈ A| if Γ ⊢ ê1 ⇒ τ1

α−−→ ê′1 ⇒ τ ′

then τ ′ ∼ (τ2 → LM)}
Γ ⊢ ê1 ⇒ τ1 📎 A τ1 ▶→ τ2 → τ Γ ⊢ e2 ⇐ τ2

Γ ⊢ ê1(e2) ⇐ τ 📎 A∗

Note that in the above case for suggestions in the function
position of an application, we need to filter the suggestions
owing to a technicality of the bidirectional type system;
despite this being a synthetic position, there are still
type consistency restrictions. In particular, we must ensure
that exp1 does indeed have function type, and that its
parameter type is consistent with τ2, the type of the
argument.

Here the rules for binary products, determining the type
information flow for projections:

SZPrj1
Γ ⊢ ê ⇒ τ1 × τ2 📎 A
Γ ⊢ π1 ê ⇒ τ1 📎 A

SZPrj2
Γ ⊢ ê ⇒ τ1 × τ2 📎 A
Γ ⊢ π2 ê ⇒ τ2 📎 A

and for pairs:
SZSynPair1

Γ ⊢ ê1 ⇒ τ1 📎 A
Γ ⊢ (ê1, e2) ⇒ τ1 × τ2 📎 A

SZSynPair2
Γ ⊢ ê2 ⇒ τ1 📎 A

Γ ⊢ (e1, ê2) ⇒ τ1 × τ2 📎 A

SZAnaPair1
τ ▶× τ1 × τ2 Γ ⊢ ê2 ⇐ τ1 📎 A

Γ ⊢ (e1, ê2) ⇐ τ 📎 A

SZAnaPair2
τ ▶× τ1 × τ2 Γ ⊢ ê1 ⇐ τ1 📎 A

Γ ⊢ (ê1, e2) ⇐ τ 📎 A

And finally the rules for binary sums, determining in-
formation flow through injections:

SZInL
τ ▶+ τL + τR Γ ⊢ ê ⇐ τL 📎 A

Γ ⊢ inl(ê) ⇐ τ 📎 A

SZInR
τ ▶+ τL + τR Γ ⊢ ê ⇐ τR 📎 A

Γ ⊢ inr(ê) ⇐ τ 📎 A

and through case expressions

SZCaseL
Γ, x : τL ⊢ êL ⇐ τ 📎 A

Γ ⊢ e ⇒ τ+ τ+ ▶+ τL + τR

Γ ⊢ case(e, x.êL, y.eR) ⇐ τ 📎 A

SZCaseR
Γ, y : τR ⊢ êR ⇐ τ 📎 A

Γ ⊢ e ⇒ τ+ τ+ ▶+ τL + τR

Γ ⊢ case(e, x.eL, y.êR) ⇐ τ 📎 A

SZCase0
A∗ = {α ∈ A| if Γ ⊢ ê ⇒ τ+

α−−→ ê′ ⇒ τ ′+
then τ ′+ ∼ (τL + τR)}

Γ ⊢ ê ⇒ τ+ 📎 A τ+ ▶+ τL + τR
Γ, x : τL ⊢ eL ⇐ τ Γ, y : τR ⊢ eR ⇐ τ

Γ ⊢ case(ê, x.eL, y.eR) ⇐ τ 📎 A∗

Note that the above case, similarly to applications, must
ensure that suggestions for the case scrutinee expression e
are consistent with branch expressions eL and eR.

There remains the synthetic base case; the synthetic
case in general is non-revealingly technical owing to certain

properties of Hazelnut and bidirectional typing system
in general; a detailed treatment including two remaining
rules is deferred to an appendix (XI). Otherwise, this
concludes the specification of the suggestion judgement.
See appendix XII for a proof that it satisfies the suggestion
sensibility theorem.

F. Scorers & Rankers Example: Error Delta
Beyond suggestion synthesis, we have provide a simple

judgement formalizing of one scoring/ranking criteria,
namely the static error count, which in Hazelnut corre-
sponds precisely to the number of non-empty holes:

#e= n expression e contains n non-empty holes

The main rule states simply that a non-empty hole ex-
pression itself has one more error than the contained
expression:

ErrorsNonEmpty
#e= n

#LeM = n+ 1

Atomic expressions on the other hand have an error count
of 0; in particular, we do not consider incompleteness, i.e.
an empty hole, to be an error in this formulation:

ErrorsHole

#LM = 0

ErrorsVar

#x= 0

ErrorsTriv

#() = 0

For all other types of composite syntax, we merely
combine the errors counts from the children:

ErrorsPair
#e1 = n1 #e2 = n2

#(e1, e2) = n1 + n2

ErrorsAp
#e1 = n1 #e2 = n2

#e1(e2) = n1 + n2

ErrorsPrjL
#e= n

#π1e= n

ErrorsPrjR
#e= n

#π2e= n

ErrorsInL
#e= n

#inl(e) = n

ErrorsInR
#e= n

#inr(e) = n

ErrorsLam
#e= n

#λx.e= n

ErrorsCase
#e1 = n1 #e2 = n2 #e3 = n3

#case(e1, x.e2, y.e3) = n1 + n2 + n3

Again, this single ranking criteria is not intended to be
sufficient, but to serve as basic illustration. Similar formal-
izations could be developed for the syntactic conservation
criteria, or other more sophisticated metrics.

VI. Related Work
In a general sense, work in this era goes back at least

to Licklider’s Man-Machine Symbiosis [42], a prescient
argument for the promise of enhanced problem-solving via
the union of human intent and discernment with machines’
facility for repetitive activity, error avoidance, and precise
recall.

We distinguish in particular some previous work with
an explicitly architectural tack:

• The Programmer’s Apprentice initiative at MIT [1–
3] in the 80s-90s constitutes some of the earliest
organized work in this space. This project sought to
automate repetitive programming tasks via classical
AI and knowledge representation, including the the-
ories of planning and frames.

• Recent work on Language-parametric Static Semantic
Code Completion [26] presents a framework for code
completion based on LSP-style parametric specifica-
tion of language syntax and semantics. Similar to
our assistant calculus, it establishes formal criteria
of soundness and completeness to demonstrate the
correctness of completions. While this work is more
linguistically general, it focuses entirely on completion
and not repair or modification, and has a more limited
treatment of incomplete program sketches.

There is a large body of literature on specific methods
of suggestion synthesis, as well as architectural approaches
to interactive assistants for other kinds of computing
activities. Many of these are referenced in the introduction;
we select some highlights here:

• From the programming synthesis literature we have
work focusing on both the presentation stage and on
synthesis techniques to interactively enhance user dis-
cernment of suggestions, including on interpretability
of suggestions [22], ambiguity resolution via generated
examples [23], affordances for granular user feedback
to refine suggestions [43], and REPL-style dialogic in-
place synthesis [37]

• Long a mainstay of the Agda proof assistant, work
on type-directed hole-filling of program sketches in
production programming languages includes [16], [15],
and [44]. Type-Directed Completion of Partial Expres-
sions [45] covers type-directed completion on explic-
itly incomplete program sketches featuring a sophisti-
cated discussion of ranking, including a notion of type
distance similar to our type specificity.

• In data science research there is an analogous ar-
chitecture with a human-centric focus, instead spe-
cializing on data cleaning tasks [46]. In particular
it addresses combining the results of heterogeneous
analyses and supporting human-in-the-loop processes.

• Work which is editor-action focused, particular on the
topic of using sequences of actions to inform sugges-
tion synthesis, includes Blue Pencil [12], Overwatch
[47], and CoditT5 [48].

• Synthesis work focusing on user interaction models
[49] may help users disambiguate between large num-
bers of options resulting from underspecification.

• Best-effort program synthesis [50], on the other hand,
presents a system which attempts to compensate for
overspecified or otherwise erroneous example sets by
generating and ranking partially-valid results.

• On the issue of correctness concerns with LLM-based
suggestion synthesizers like OpenAI’s Codex, Inter-
active Code Generation via Test-Driven User-Intent
Formalization [51] presents a workflow based on test-
driven user intent formalization, prompting users to
confirm or reject input/output examples derived from
synthesized suggestions. See [52] for other work in this
space.

VII. Future Directions
Our own design efforts remain ongoing. One key direc-

tion is to directly incorporate AI techniques, in particular
deep reinforcement learning, which is also oriented around
an action space and a reward/scoring structure (human
acceptance, tests passing, type errors resolution). We are
currently running experiments training an RL agent to
perform basic example-based completion tasks in a modi-
fied Hazel environment, where the agent’s action space is
both enriched and circumscribed by type information.

We are also working to incorporate more complex mul-
tistage refactorings via interactive monadic edit actions,
extending work on edit-time tactics in dependently-typed
languages [53] and in proof assistants, in particular the
Mtac [54] approach to custom proof automation in Coq.
On the architectural side, we seek to explore and incorpo-
rate interfaces for the temporally and spatially-extended
process of updating code after changes to type definitions,
and, conversely, suggesting changes in type definitions
based on intent expressed via changes to expressions.
On the mathematical side, this consists of extending our
formalism in a direction analogous to Hoare triples in order
to support proving that relevant invariants are maintained
as multiple dependent steps of human and machine actions
are interleaved.

VIII. Conclusion
This paper attempts to organize the burgeoning area

of programming assistant design with a high level ar-
chitecture and terminology, and then demonstrates the
feasibility of this architecture for design explorations with
three prototype assistants, extending both the Hazel de-
velopment environment and its underlying editor calculus.
These design explorations highlight design criteria that
are perhaps understudied: semantic ranking, integration,
explanations, and human-in-the-loop interactions with
synthesizers. We presented a formal model for specifying
suggestion synthesizers, and provide a characterization of
suggestion sensibility and a worked-out proof that our
example model satisfies that characterization. We hope
that this work helps to bring together various communities
working on individual components of the overall system
design and ultimately to tap the creative and collaborative
potential of human-in-the-loop programming assistants.

IX. Acknowledgements
We would like to thank Xinyu Wang for his encourage-

ment and support; the Hazel Live Assistant began as a

project in his program synthesis class. We would also like
to thank Justin Lubin for his patient advice in integrating
the Smyth synthesizer.

References
[1] C. Rich, H. E. Shrobe, and R. C. Waters, “Overview of the Pro-

grammer’s Apprentice,” in Sixth International Joint Conference
on Artificial Intelligence, IJCAI 79, 1979, pp. 827–828.

[2] C. Rich and H. E. Shrobe, “Initial Report on a Lisp
Programmer’s Apprentice,” IEEE Trans. Software Eng.,
vol. 4, no. 6, pp. 456–467, 1978. [Online]. Available:
https://doi.org/10.1109/TSE.1978.233869

[3] H. E. Shrobe, B. Katz, and R. Davis, “Towards a Programmer’s
Apprentice (Again),” in Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015, pp. 4062–4066.

[4] D. Hou and D. M. Pletcher, “An Evaluation of the Strategies
of Sorting, Filtering, and Grouping API Methods for Code
Completion,” in 2011 27th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 2011, pp. 233–242.

[5] R. Robbes and M. Lanza, “How Program History Can Improve
Code Completion,” in 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2008,
pp. 317–326.

[6] M. Bruch, M. Monperrus, and M. Mezini, “Learning from Ex-
amples to Improve Code Completion Systems,” in 7th Joint
Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium, 2009, pp. 213–222.

[7] G. C. Murphy, M. Kersten, and L. Findlater, “How Are Java
Software Developers Using the Eclipse IDE?” IEEE Software,
vol. 23, no. 4, pp. 76–83, 2006.

[8] S. Gulwani, O. Polozov, and R. Singh, “Program Synthesis,”
Found. Trends Program. Lang., vol. 4, no. 1-2, pp. 1–119, 2017.
[Online]. Available: https://doi.org/10.1561/2500000010

[9] P.-M. Osera and S. Zdancewic, “Type-and-Example-Directed
Program Synthesis,” Programming Language Design and Im-
plementation (PLDI), vol. 50, no. 6, pp. 619–630, 2015.

[10] J. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic,
“Example-Directed Synthesis: A Type-Theoretic Interpreta-
tion,” in Symposium on Principles of Programming Languages
(POPL), 2016.

[11] A. Solar-Lezama, “Program Sketching,” International Journal
on Software Tools for Technology Transfer, vol. 15, no. 5, pp.
475–495, 2013.

[12] A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna,
G. Soares, A. Tiwari, and A. Udupa, “On the Fly
Synthesis of Edit Suggestions,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, oct 2019. [Online]. Available:
https://doi.org/10.1145/3360569

[13] T. A. Lau, P. M. Domingos, and D. S. Weld, “Version Space Al-
gebra and its Application to Programming by Demonstration.”
in ICML, 2000, pp. 527–534.

[14] N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program Syn-
thesis From Polymorphic Refinement Types,” Programming
Language Design and Implementation (PLDI), vol. 51, no. 6,
pp. 522–538, 2016.

[15] M. P. Gissurarson, “Suggesting Valid Hole Fits for Typed-Holes
(Experience Report),” ACM SIGPLAN International Sympo-
sium on Haskell 11, vol. 53, no. 7, pp. 179–185, 2018.

[16] ——, “The Hole Story: Type-Driven Synthesis and Repair,”
Licentiate Thesis, 2022.

[17] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman,
A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry,
P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov,
A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet,
F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino,
N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,
W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating

Large Language Models Trained on Code,” 2021. [Online].
Available: https://arxiv.org/abs/2107.03374

[18] E. C. R. Shin, M. Allamanis, M. Brockschmidt, and A. Polozov,
“Program Synthesis and Semantic Parsing with Learned Code
Idioms,” in Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Sys-
tems (NeurIPS), H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp.
10 824–10 834.

[19] V. Raychev, M. Vechev, and E. Yahav, “Code Completion with
Statistical Language Models,” in Programming Language
Design and Implementation (PLDI). Association for
Computing Machinery, 2014, p. 419–428. [Online]. Available:
https://doi.org/10.1145/2594291.2594321

[20] J. Li, Y. Wang, I. King, and M. R. Lyu, “Code
Completion with Neural Attention and Pointer Networks,”
Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI’18), 2017. [Online]. Available:
http://arxiv.org/abs/1711.09573

[21] C. Liu, X. Wang, R. Shin, J. E. Gonzalez, and D. Song, “Neural
Code Completion,” 2016.

[22] T. Zhang, Z. Chen, Y. Zhu, P. Vaithilingam, X. Wang, and
E. L. Glassman, “Interpretable Program Synthesis,” in 2021
CHI Conference on Human Factors in Computing Systems,
ser. CHI ’21. Association for Computing Machinery, 2021.
[Online]. Available: https://doi.org/10.1145/3411764.3445646

[23] T. Zhang, L. Lowmanstone, X. Wang, and E. L.
Glassman, Interactive Program Synthesis by Augmented
Examples. UIST, 2020, p. 627–648. [Online]. Available:
https://doi.org/10.1145/3379337.3415900

[24] C. Omar, I. Voysey, M. Hilton, J. Aldrich, and M. A. Hammer,
“Hazelnut: A Bidirectionally Typed Structure Editor Calculus,”
in ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), 2017.

[25] C. Omar, I. Voysey, R. Chugh, and M. A. Hammer, “Live
Functional Programming with Typed Holes,” Proceedings of the
ACM on Programming Languages (PACMPL), Issue POPL,
2019.

[26] D. A. Pelsmaeker, H. van Antwerpen, C. B. Poulsen, and
E. Visser, “Language-parametric static semantic code comple-
tion,” Proceedings of the ACM on Programming Languages
(PACMPL), Issue OOPSLA, 2022.

[27] H. Potter and C. Omar, “Hazel Tutor: Guiding Novices Through
Type-Driven Development Strategies,” Human Aspects of Types
and Reasoning Assistants (HATRA), 2020.

[28] F. Bour, T. Refis, and G. Scherer, “Merlin: A Language Server
for OCaml (Experience Report),” Proc. ACM Program.
Lang., vol. 2, no. ICFP, jul 2018. [Online]. Available:
https://doi.org/10.1145/3236798

[29] C. Omar, I. Voysey, M. Hilton, J. Sunshine, C. Le Goues,
J. Aldrich, and M. A. Hammer, “Toward Semantic Foundations
for Program Editors,” in Summit on Advances in Programming
Languages (SNAPL), 2017.

[30] S. L. Graham, C. B. Haley, and W. N. Joy, “Practical LR Error
Recovery,” in SIGPLAN Symposium on Compiler Construction
(CC), 1979.

[31] M. de Jonge, E. Nilsson-Nyman, L. C. L. Kats, and E. Visser,
“Natural and Flexible Error Recovery for Generated Parsers,”
in Software Language Engineering (SLE), 2009.

[32] R. Robbes and M. Lanza, “How Program History Can Improve
Code Completion,” in 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008, pp. 317–
326.

[33] S. Han, D. R. Wallace, and R. C. Miller, “Code Completion
from Abbreviated Input,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering, 2009, pp. 332–
343.

[34] H. Finkel and I. Laguna, “Report of the Workshop on Program
Synthesis for Scientific Computing,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.01687

[35] D. Doran, S. Schulz, and T. R. Besold, “What Does Explainable
AI Really Mean? A New Conceptualization of Perspectives,”
arXiv preprint arXiv:1710.00794, 2017.

[36] C. Omar, Y. S. Yoon, T. D. LaToza, and B. A. Myers, “Active
Code Completion,” in 2012 34th International Conference on
Software Engineering (ICSE), 2012, pp. 859–869.

[37] H. Peleg, R. Gabay, S. Itzhaky, and E. Yahav, “Programming
with a Read-Eval-Synth Loop,” OOPSLA, vol. 4, nov 2020.
[Online]. Available: https://doi.org/10.1145/3428227

[38] J. Lubin, N. Collins, C. Omar, and R. Chugh, “Program Sketch-
ing with Live Bidirectional Evaluation,” Proceedings of the ACM
on Programming Languages, vol. 4, no. ICFP, pp. 1–29, 2020.

[39] L. Swartz, “Why people hate the paperclip: Labels, appearance,
behavior, and social responses to user interface agents,” Ph.D.
dissertation, Citeseer, 2003.

[40] G. Huet, “The zipper,” Journal of functional programming,
1997.

[41] B. C. Pierce and D. N. Turner, “Local type inference,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), 2000.

[42] J. Licklider, “Man-machine symbiosis,” 1960.
[43] H. Peleg, S. Shoham, and E. Yahav, “Programming not only by

example,” in ICSE, 2018.
[44] P. Redmond, G. Shen, and L. Kuper, “Toward hole-driven devel-

opment with liquid haskell,” arXiv preprint arXiv:2110.04461,
2021.

[45] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-
directed completion of partial expressions,” in Conference on
Programming Language Design and Implementation (PLDI),
2012.

[46] E. K. Rezig, M. Ouzzani, A. K. Elmagarmid, W. G. Aref,
and M. Stonebraker, “Towards an end-to-end human-centric
data cleaning framework,” in Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, 2019.

[47] Y. Zhang, Y. Bajpai, P. Gupta, A. Ketkar, M. Allamanis,
T. Barik, S. Gulwani, A. Radhakrishna, M. Raza, G. Soares
et al., “Overwatch: Learning patterns in code edit sequences,”
arXiv preprint arXiv:2207.12456, 2022.

[48] J. Zhang, S. Panthaplackel, P. Nie, J. J. Li, and M. Gligoric,
“Coditt5: Pretraining for source code and natural language
editing,” in 37th IEEE/ACM International Conference on Au-
tomated Software Engineering, 2022, pp. 1–12.

[49] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polo-
zov, R. Singh, B. Zorn, and S. Gulwani, “User Interaction
Models for Disambiguation in Programming by Example,” in
Symposium on User Interface Software and Technology (UIST),
2015.

[50] H. Peleg and N. Polikarpova, “Perfect is the enemy of good:
Best-effort program synthesis,” Leibniz international proceed-
ings in informatics, 2020.

[51] S. K. Lahiri, A. Naik, G. Sakkas, P. Choudhury, C. von Veh,
M. Musuvathi, J. P. Inala, C. Wang, and J. Gao, “Interactive
code generation via test-driven user-intent formalization,” arXiv
preprint, 2022.

[52] D. Wong, A. Kothig, and P. Lam, “Exploring the verifia-
bility of code generated by github copilot,” arXiv preprint
arXiv:2209.01766, 2022.

[53] J. Korkut, “Edit-Time Tactics in Idris,” Master’s thesis, Wes-
leyan University, 2018.

[54] J.-O. Kaiser, B. Ziliani, R. Krebbers, Y. Régis-Gianas, and
D. Dreyer, “Mtac2: Typed tactics for backward reasoning in
coq,” ICFP, 2018.

X. Appendix: Hazelnut Products Extension
The following extends the statics and action rules for

Hazelnut[24], continuing the original numbering scheme.
τ1 ∼ τ2 τ1 is consistent with τ2

27
τ1 ∼ τ ′1 τ2 ∼ τ ′2
τ1 × τ2 ∼ τ ′1 × τ ′2

τ ▶× τ1 × τ2 τ has matched product type τ1 × τ2

28a

LM ▶× LM × LM
28b

τ1 × τ2 ▶× τ1 × τ2

Γ ⊢ e ⇒ τ e synthesizes τ

29

Γ ⊢ () ⇒ 1

30a
Γ ⊢ e ⇒ τ1 × _
Γ ⊢ π1e ⇒ τ1

30b
Γ ⊢ e ⇒ _ × τ2

Γ ⊢ π2e ⇒ τ2

30c
Γ ⊢ e1 ⇒ τ1 Γ ⊢ e2 ⇒ τ2

Γ ⊢ (e1, e2) ⇒ τ1 × τ2

Γ ⊢ e ⇐ τ e analyzes against τ

31
τ ▶× τ1 × τ2 Γ ⊢ e1 ⇐ τ1 Γ ⊢ e2 ⇐ τ2

Γ ⊢ (e1, e2) ⇐ τ

Γ ⊢ ê ⇒ τ
α−−→ ê′ ⇒ τ ′

32a
Γ ⊢ ê ⇒ τ1 × _ α−−→ ê′ ⇒ τ ′1 × _
Γ ⊢ π1ê ⇒ τ1

α−−→ π1ê
′ ⇒ τ ′1

32b
Γ ⊢ ê ⇒ _ × τ2

α−−→ ê′ ⇒ _ × τ ′2

Γ ⊢ π2ê ⇒ τ2
α−−→ π2ê

′ ⇒ τ ′2

32c
Γ ⊢ ê1 ⇒ τ1

α−−→ ê′1 ⇒ τ ′1

Γ ⊢ (ê1, e2) ⇒ (τ1, τ2)
α−−→ (ê′1, e2) ⇒ (τ ′1, τ2)

32d
Γ ⊢ ê2 ⇒ τ2

α−−→ ê′2 ⇒ τ ′2

Γ ⊢ (e1, ê2) ⇒ (τ1, τ2)
α−−→ (e1, ê2) ⇒ (τ1, τ

′
2)

Γ ⊢ ê
α−−→ ê′ ⇐ τ

33a
τ ▶× τ1 × _ Γ ⊢ ê1

α−−→ ê′1 ⇐ τ1

Γ ⊢ (ê1, e2)
α−−→ (ê′1, e2) ⇐ τ

33b
τ ▶× _ × τ2 Γ ⊢ ê2

α−−→ ê′2 ⇐ τ2

Γ ⊢ (e1, ê2)
α−−→ (e1, ê

′
2) ⇐ τ

XI. Appendix: Synthetic Suggestion Judgement
Our focus in the paper proper has been on the analytic

case: suggestions specific to type constraints imposed by
the surrounding syntax. In synthetic position, with no
type constraints, we would ideally simply defer to the
analytic version, using an expected type of LM, which, being
consistent with all other types, would simply collect all
suggestions from the analytic synthesizers:

SuggestSyn???
Γ ⊢ ê ⇐ LM 📎 A
Γ ⊢ ê ⇒ τ 📎 A

Unfortunately under this rule, the synthetic sensibility
theorem would not hold. This is because there are some in-
troduction forms, namely (unannotated) anonymous func-
tions and injections, which according to the Hazelnut
semantics are not well-typed in synthetic position. Thus
we simply our presentation here by simply returning no
suggestion as the synethetic base case:

SuggestSyn

Γ ⊢ ▷e◁ ⇒ τ 📎 {}

Alternatively, we could repeat a similar presentation as the
analytic base cases, taking care to omit the problematic
injection and anonymous function forms. One might ask
why we do not dispense with the synthetic suggestion
form entirely in our treatment. This is because, as will
be seen in the below zipper cases, we must pass through
synthetic positions to obtain suggestions for analytic ones.
In fact, some of the zipper rules have no analytic form,
necessitating a subsumption rule, directly analogous to the
action subsumption rule for Hazelnut[24].

Subsumption
Γ ⊢ ê⋄ ⇒ τ ′ Γ ⊢ ê ⇒ τ ′ 📎 A τ ∼ τ ′

Γ ⊢ ê ⇐ τ 📎 A∗

where A∗ = {α ∈ A| if Γ ⊢ ê ⇒ τ ′
α−−→ ê′′ ⇒ τ ′′

then τ ∼ τ ′′}

In any case, while the preceding rules are necessary to
complete the technical treatment, they offer no real con-
tent relating to architectural assistant decisions and are
thus relegated to this appendix.

XII. Appendix: Proof of Sensibility
We will, by mutual induction, demonstrate the principle

conclusions of both analytic and synthetic sensibility, that
is:

• For all Γ, ê, τ, α ∈ A where Γ ⊢ ê⋄ ⇐ τ and
Γ ⊢ ê ⇐ τ 📎 A there exists an ê′ such that Γ ⊢
ê

α−−→ ê′ ⇐ τ
• And for all Γ, ê, τ, α ∈ A where Γ ⊢ ê⋄ ⇒ τ and

Γ ⊢ ê ⇒ τ 📎 A there exists an ê′ and a τ ′ such that
Γ ⊢ ê ⇒ τ

α−−→ ê′ ⇒ τ ′

We will then provide a proof sketch, mirroring the struc-
ture of the main proof, of the secondary conclusions; that
is, that in both cases #e⋄ ≤ #e′⋄ .

We will proceed by induction on derivations of the rules
defining both analytic and synthetic judgements. We will
first case on our 3 analytic base case (cursor term) rules,
then our 12 inductive (zipper case) rules, and finally our
single synthetic base case and subsumption rule. In each
case we will ultimately produce a derivation of an analytic
action judgement whose resultant is our desired ê′ (and
in the synthetic cases, synthesizes our desired τ ′). Where
not otherwise noted, numerical references to rules and
theorems are to Hazelnut[24].

Let Γ be arbitrary.

A. Analytic Base Cases
1) SuggestCompleteAna:

Γ ⊢ ▷LM◁ ⇐ τ 📎 Intros(τ) ∪ Elims(Γ, τ)

Given an action α synthesized by this rule, we must
consider two cases: first, that α ∈ Intros(τ) and second,
that α ∈ Elims(Γ, τ).

1) Say α ∈ Intros(τ) and proceed by induction on τ . By
definition of HTyp there are 5 cases:

a) Suppose τ = 1. Since Intros(1) = {🔨 ▷()◁ } suffice
it to consider α = 🔨 ▷()◁ . Let D1 be:

Γ ⊢ () ⇒ 129 1 ∼ 13c

Γ ⊢ () ⇐ 1 2b

Thus we have:

D1 α = 🔨 ▷()◁

Γ ⊢ ▷LM◁ α−−→ ▷()◁ ⇐ 1
ConsExp

That is, the analytic action judgement holds for the
action of completing a hole with the trivial value,
completing this case.

b) Suppose τ = τ1 → τ2. As above, suffice it to
consider α = 🔨 λx. ▷LM◁ . Now let D1 be

Γ, x : τ1 ⊢ LM ⇒ LM1f LM ∼ τ2
3a

Γ, x : τ1 ⊢ LM ⇐ τ2
2b

and let D2 be

τ1 → τ2 ▶→ τ1 → τ2
4b D1

Γ ⊢ λx.LM ⇐ τ2
2a

and so we have that

D2 α = 🔨 λx. ▷LM◁
Γ ⊢ ▷LM◁ α−−→ λx. ▷LM◁ ⇐ τ1 → τ2

ConsExp

c) Suppose τ = τ1+τ2. Proceeding as above , consider
the case α = 🔨 inl(▷LM◁) ; α = 🔨 inr(▷LM◁) is
precisely analogous. Now let D1 be

Γ ⊢ LM ⇒ LM1f LM ∼ τ1
3a

Γ ⊢ LM ⇐ τ1
2b

and let D2 be

τ1 + τ2 ▶+ τ1 + τ2
20b D1

Γ ⊢ inl(LM) ⇐ τ1 + τ2
2a

and so we have that

D2 α = 🔨 inl(▷LM◁)
Γ ⊢ ▷LM◁ α−−→ inl(▷LM◁) ⇐ τ1 + τ2

ConsExp

d) Suppose τ = τ1 × τ2. Now let D1 be

Γ ⊢ LM ⇒ LM1f
Γ ⊢ LM ⇒ LM1f

Γ ⊢ (LM, LM) ⇒ LM × LM 30c

and let D2 be

D1

τ1 ∼ LM3C
τ2 ∼ LM3C

(τ1, τ2) ∼ (LM, LM) 27

Γ ⊢ (LM, LM) ⇐ τ1 × τ2
2b

and so we have that

D2 α = 🔨 (▷LM◁ , LM)
Γ ⊢ ▷LM◁ α−−→ (▷LM◁ , LM) ⇐ τ1 × τ2

ConsExp

e) Finally, suppose τ = LM. By definition, the actions
for this case is precisely the collection of all the
actions from the previous 4 cases. Thus we are
already done.

2) Say instead that α ∈ Elims(Γ, τ). Here, let τ be
arbitrary. By the definition of Elims we have three
cases: Either we have α ∈ Case, or α ∈ Var(Γ, τ), or
α ∈ AP(Γ, τ).

a) By definition of Case, suffice it to consider α =

🔨 case(▷LM◁ , x.LM, y.LM) . Now let D(var) be

Γ, var : LM ⊢ LM ⇒ LM1f LM ∼ τ
3a

Γ, var : LM ⊢ LM ⇐ τ
2b

and let D1 be

Γ ⊢ LM ⇒ LM1f LM ▶+ LM + LM20a D(x) D(y)

Γ ⊢ case(LM, x.LM, y.LM) ⇐ τ
21b

and so we have that

D1 α = 🔨 case(▷LM◁ , x.LM, y.LM)
Γ ⊢ ▷LM◁ α−−→ case(▷LM◁ , x.LM, y.LM) ⇐ τ

ConsExp

b) By definition of Var, suffice it to consider α =

🔨 ▷x◁ for some x : τ ′ ∈ Γ where τ ′ ∼ τ . Now
let D1 be

x : τ ′ ∈ Γ

Γ ⊢ x ⇒ τ ′
1a

τ ′ ∼ τ
3c

Γ ⊢ x ⇐ τ
2b

so that
D1 α = 🔨 ▷x◁

Γ ⊢ ▷LM◁ α−−→ ▷x◁ ⇐ τ
ConsExp

c) By definition of AP, suffice it to consider
α = 🔨 ▷e◁ for some e satisfying Γ ⊢ x⇝ e ⇐ τ

where x : τ ′ ∈ Γ and τ ′ ∼ τ . Now we state and
prove a lemma:

Lemma: For all Γ, e, e′, τ where Γ ⊢ e′ ⇒ _
and Γ ⊢ e′ ⇝ e ⇐ τ , we have that Γ ⊢ e ⇐ τ .
Proof: Let Γ, e, e′, τ be arbitrary; we proceed by
induction on derivations of the AP judgement. By
definition of this judgement there is one base and
three inductive cases to consider:
• AP − Base: In this case, the premise of the rule

gives us our conclusion precisely:
AP-Base

Γ ⊢ e ⇐ τ

Γ ⊢ e⇝ e ⇐ τ

• AP − App: In this case, we may apply the induc-
tive hypothesis directly to the second premise,
which immediately gives us our conclusion:

AP-App
Γ ⊢ e ⇒ _ → _ Γ ⊢ e(LM)⇝ e′ ⇐ τ

Γ ⊢ e⇝ e′ ⇐ τ

• AP − Proj1 and AP − Proj2: These proceed di-
rectly analogously to the previous case.

Note that while this demonstrates that expression
satisfying the judgement are indeed properly typed,
this judgement (unlike the rest in this paper) is
neither deterministic or computational; in practice
a search strategy would need to be specified, and
be shown to be terminating.
So using the lemma and letting Γ be our Γ and
e′ = x which immediately satisfies Γ ⊢ x ⇒ _ we
have that Γ ⊢ e ⇐ τ and thus

Γ ⊢ e ⇐ τ
Ass. α = 🔨 ▷e◁

Γ ⊢ ▷LM◁ α−−→ ▷e◁ ⇐ τ
ConsExp

2) SuggestModifyAna:
SuggestModifyAna

e ̸= LM e ̸= L_M
Γ ⊢ ▷e◁ ⇐ τ 📎 Wraps(Γ, e, τ) ∪ Replaces(Γ, τ)

Let τ be arbitrary. Given an action α satisfying this
judgement, we have two cases: Either α ∈ Wraps(Γ, e, τ)
or α ∈ Replaces(Γ, τ).

1) Suppose α ∈ Wraps(Γ, e, τ). Then by definition of
Wraps, α = 🔨 f(▷e◁) for some f : τin → τ ∈ Γ
where Γ ⊢ e ⇒ τe and τe ∼ τin. Now let D1 be

f : τin → τ ∈ Γ

Γ ⊢ f ⇒ τin → τ
1a

Γ ⊢ e ⇒ τe
Ass.

τe ∼ τin
Ass.

Γ ⊢ e ⇐ τin
2b

Γ ⊢ f(e) ⇐ τ
1b

so we have that

D1 α = 🔨 f(▷e◁)

Γ ⊢ ▷LM◁ α−−→ f(▷e◁) ⇐ τ
ConsExp

2) Suppose instead that α ∈ Replaces(Γ, τ). Then by
definition of Replaces, α = 🗑 del ;α′ for some
α′ ∈ A′ from Γ ⊢ ▷LM◁ ⇐ τ 📎 A′ . Let ê′ be the
result of performing α′ on ▷LM◁ so that by the
SuggestCompleteAna case we know Γ ⊢ ▷LM◁ α′

−−→ ê′ ⇐
τ . Then we have:

Γ ⊢ ▷e◁
🗑 del−−−−−−→ ▷LM◁ ⇐ τ

15b

Γ ⊢ ▷LM◁ α′

−−→ ê′ ⇐ τ
Ass.

Γ ⊢ ▷e◁
🗑 del ;α′

−−−−−−−−→ ê′ ⇐ τ

11b

3) SuggestRepairAna:
SuggestRepairAna

Γ ⊢ ▷e◁ ⇐ τ 📎 A

Γ ⊢ ▷LeM◁ ⇐ τ 📎 {move child;α | α ∈ A}

Let τ be arbitrary. Then α = move child;α for some α ∈
A satisfying Γ ⊢ ▷e◁ ⇐ τ 📎 A . Let ê′ be the result of
performing α on ▷e◁ so that by the SuggestModifyAna
case we know Γ ⊢ ▷LM◁ α′

−−→ ê′ ⇐ τ . Then we have:

Γ ⊢ ▷LeM◁ move child−−−−−−−→ L ▷e◁ M ⇐ τ
15b

Γ ⊢ ▷e◁
α−−→ ê′ ⇐ τ

Ass.

Γ ⊢ ▷LeM◁ move child;α−−−−−−−−→ ê′ ⇐ τ
11b

B. Zipper Cases
1) Rule: SZLam:

SZLam
τ ▶→ τ1 → τ2 Γ, x : τ1 ⊢ ê ⇐ τ2 📎 A

Γ ⊢ λx.ê ⇐ τ 📎 A

As rule’s premise we know Γ, x : τ1 ⊢ ê ⇐ τ2 📎 A . Let
α ∈ A satisfying that premise. Then by our induction

hypothesis we have that there exists an ê′ satisfying
Γ ⊢ ê

α−−→ ê′ ⇐ τ . Thus

τ ▶→ τ1 → τ2
Ass.

Γ ⊢ ê
α−−→ ê′ ⇐ τ

Ass.

Γ ⊢ λx.ê
α−−→ λx.ê′ ⇐ τ

18a

2) Rule: SZAppR:
SZAppR
Γ ⊢ e1 ⇒ τ1 τ1 ▶→ τ2 → τ Γ ⊢ ê2 ⇐ τ2 📎 A

Γ ⊢ e1(ê2) ⇒ τ 📎 A

As the rule’s premise, we know Γ ⊢ ê2 ⇐ τ2 📎 A . Let
α ∈ A satisfying that premise. Then by our induction
hypothesis we have that there exists an ê′ satisfying
Γ ⊢ ê2

α−−→ ê′2 ⇐ τ . Thus

Γ ⊢ e1 ⇒ τ1
Ass.

τ1 ▶→ τ2 → τ
Ass.

Γ ⊢ ê2
α−−→ ê′2 ⇐ τ2

Ass.

Γ ⊢ e1(ê2) ⇒ τ
α−−→ e1(ê

′
2) ⇒ τ

18c

3) Rule: SZAppL:

Γ ⊢ ê1 ⇒ τ1 📎 A τ1 ▶→ τ2 → τ Γ ⊢ e2 ⇐ τ2

Γ ⊢ ê1(e2) ⇒ τ 📎 A∗

where A∗ = {α ∈ A| if Γ ⊢ ê1 ⇒ τ1
α−−→ ê′1 ⇒ τ ′1

then τ ′1 ∼ (τ2 → LM)}
As the rule’s premise, we know Γ ⊢ ê1 ⇒ τ1 📎 A . Let
α ∈ A satisfying that premise. Then by our induction
hypothesis we have that there exists an ê′1 and a τ ′1
satisfying Γ ⊢ ê1 ⇒ τ1

α−−→ ê′1 ⇒ τ ′1.
Furthermore, since we know from the condition on α ∈

A∗ that τ ′1 must have either function type with argument
consistent with τ2 (being the matched-arrow argument
type of τ1), or hole type, we know that τ ′1 ▶→ τ ′2 → τ ′

holds and establishes that τ2 ∼ τ ′2 and thus, along with
the premise Γ ⊢ e2 ⇐ τ2, establishes that Γ ⊢ e2 ⇐ τ ′2.

Finally, from the typing-synthesis premise of the the-
orem and inversion we have Γ ⊢ e1 ⇒ τ1 and hence
Γ ⊢ ê⋄1 ⇒ τ1. Thus

Γ ⊢ ê⋄1 ⇒ τ1
Ass.

τ ′1 ▶→ τ ′2 → τ ′
Ass.

Γ ⊢ ê1 ⇒ τ1
α−−→ ê′1 ⇒ τ ′1

Ass.
Γ ⊢ e2 ⇐ τ ′2

Ass.

Γ ⊢ e1(ê2) ⇒ τ
α−−→ e1(ê

′
2) ⇒ τ ′

18d

4) Rule: SZInL (SZInR similar):

τ ▶+ τ1 + τ2 Γ ⊢ ê ⇐ τ1 📎 A
Γ ⊢ inl(ê) ⇐ τ 📎 A

As the rule’s premise we know Γ ⊢ ê ⇐ τ1 📎 A . Let
α ∈ A satisfying that premise. Then by our induction

hypothesis we have that there exists an ê′ satisfying
Γ ⊢ ê

α−−→ ê′ ⇐ τ1. Thus

τ ▶+ τ1 + τ2
Ass.

Γ ⊢ ê
α−−→ ê′ ⇐ τ

Ass.

Γ ⊢ inl(ê) α−−→ inl(ê′) ⇐ τ
23d

5) Rule: SZCaseR (SZCaseL similar):

Γ ⊢ e ⇒ τ+
τ+ ▶+ τL + τR Γ, y : τR ⊢ êR ⇐ τ 📎 A

Γ ⊢ case(e, x.eL, y.êR) ⇐ τ 📎 A

As the rule’s premise, we know Γ, y : τR ⊢ êR ⇐ τ 📎 A .
Let α ∈ A satisfying that premise. Then by our induction
hypothesis we have that there exists an ê′R satisfying Γ ⊢
êR

α−−→ ê′R ⇐ τR. Thus

Γ ⊢ e ⇒ τ+
Ass.

τ+ ▶+ τL → τR
Ass.

Γ ⊢ êR
α−−→ ê′R ⇐ τR

Ass.

Γ ⊢ case(e, x.eL, y.êR)
α−−→ case(e, x.eL, y.ê′R) ⇐ τ

23g

6) Rule: SZCase0:

Γ ⊢ ê ⇒ τ+ 📎 A τ+ ▶+ τL + τR
Γ, x : τL ⊢ eL ⇐ τ Γ, y : τR ⊢ eR ⇐ τ

Γ ⊢ case(ê, x.eL, y.eR) ⇐ τ 📎 A∗

where A∗ = {α ∈ A| if Γ ⊢ ê ⇒ τ+
α−−→ ê′ ⇒ τ ′

then τ ′ ∼ (τL + τR)}

As the rule’s premise, we know Γ ⊢ ê ⇒ τ+ 📎 A . Let
α ∈ A satisfying that premise. Then by our induction
hypothesis we have that there exists an ê′ and a τ ′+
satisfying Γ ⊢ ê1 ⇒ τ+

α−−→ ê′ ⇒ τ ′+.
Furthermore, since we know from the condition on α ∈

A∗ that τ ′+ must have either sum type consistent with
τL + τR (being the matched-sum of τ+), or hole type, we
know that τ ′+ ▶→ τ ′L → τ ′R holds and establishes τL ∼ τ ′L
and τR ∼ τ ′R and thus, along with the last two premises of
SZCase0, that Γ, x : τ ′L ⊢ eL ⇐ τ and Γ, y : τ ′R ⊢ eR ⇐ τ .

Finally from the typing-analysis premise of the theorem
and inversion we have Γ ⊢ e ⇒ τ+ and hence Γ ⊢ ê⋄ ⇒ τ+.
Thus

Γ ⊢ ê⋄ ⇒ τ+
Ass.

Γ ⊢ ê ⇒ τ+
α−−→ ê′ ⇒ τ ′+

Ass.
τ ′+ ▶+ τ ′L → τ ′R

Ass.

Γ, x : τ ′L ⊢ eL ⇐ τ
Ass.

Γ, y : τ ′R ⊢ eR ⇐ τ
Ass.

Γ ⊢ case(ê, x.eL, y.eR)
α−−→ case(ê′, x.eL, y.eR) ⇐ τ

23e

7) Rule: SZPrj1 (SZPrj2 similar) :

Γ ⊢ ê ⇒ τ1 × τ2 📎 A
Γ ⊢ π1 ê ⇒ τ1 📎 A

As the rule’s premise, we know Γ ⊢ ê ⇒ τ1 × τ2 📎 A . Let
α ∈ A satisfying that premise. Then by our (synthetic)
induction hypothesis we have that there exists an ê′ and
a and a τ ′1 satisfying Γ ⊢ ê ⇒ τ1 × τ2

α−−→ ê′ ⇒ τ ′1 × τ2.
Thus we satisfy

Γ ⊢ ê ⇒ τ1 × _ α−−→ ê′ ⇒ τ ′1 × _
Γ ⊢ π1ê ⇒ τ1

α−−→ π1ê
′ ⇒ τ ′1

32a

8) Rule: SZSynPair1 (SZSynPair2 similar) :

Γ ⊢ ê1 ⇒ τ1 📎 A
Γ ⊢ (ê1, e2) ⇒ τ1 × τ2 📎 A

As the rule’s premise, we know Γ ⊢ ê1 ⇒ τ1 📎 A . Let
α ∈ A satisfying that premise. Then by our (synthetic)
induction hypothesis we have that there exists an ê′1 and
a τ ′1 satisfying Γ ⊢ ê1 ⇒ τ1

α−−→ ê′1 ⇒ τ ′1. Thus we satisfy

Γ ⊢ ê1 ⇒ τ1
α−−→ ê′1 ⇒ τ ′1

Γ ⊢ (ê1, e2) ⇒ (τ1, τ2)
α−−→ (ê′1, e2) ⇒ (τ ′1, τ2)

32c

9) Rule: SZAnaPair1 (SZAnaPair2 similar) :

τ ▶× τ1 × τ2 Γ ⊢ ê2 ⇐ τ1 📎 A
Γ ⊢ (e1, ê2) ⇐ τ 📎 A

As the rule’s premise, we know Γ ⊢ ê2 ⇐ τ1 📎 A sat-
isfying that premise. Then by our (analytic) induction
hypothesis we have that there exists an ê′1 satisfying
Γ ⊢ ê1

α−−→ ê′1 ⇐ τ1. Thus along with the rule’s other
premise we satisfy

τ ▶× τ1 × _ Γ ⊢ ê1
α−−→ ê′1 ⇐ τ1

Γ ⊢ (ê1, e2)
α−−→ (ê′1, e2) ⇐ τ

33a

C. Synthesis & Subsumption
1) Rule: SuggestSyn:

Γ ⊢ ▷e◁ ⇒ τ 📎 {}

This rule suggests no actions, so the conclusion holds
vacuously.

2) Rule: Subsumption:
Subsumption
Γ ⊢ ê⋄ ⇒ τ ′ Γ ⊢ ê ⇒ τ ′ 📎 A τ ∼ τ ′

Γ ⊢ ê ⇐ τ 📎 A∗

where A∗ = {α ∈ A| if Γ ⊢ ê ⇒ τ ′
α−−→ ê′ ⇒ τ ′′

then τ ∼ τ ′′}

As rule’s premise we know Γ ⊢ ê ⇒ τ ′ 📎 A . Let α ∈ A∗.
Then by our synthetic induction hypothesis we have that
there exists an ê′ and a τ ′′ satisfying Γ ⊢ ê ⇒ τ ′

α−−→ ê′ ⇒

τ ′′. Finally, from our condition on α ∈ A∗, we have that
τ ∼ τ ′′. Thus

Γ ⊢ ê⋄ ⇐ τ ′
Ass.

Γ ⊢ ê ⇒ τ ′
α−−→ ê′ ⇒ τ ′′

Ass.
τ ∼ τ ′′

Ass.

Γ ⊢ ê
α−−→ ê′ ⇐ τ

5

D. Error Count Sketch
We sketch a proof for the second clause of the suggestion

sensibility theorem; namely that the non-empty-hole count
(reflecting the number of what would otherwise be type
errors) does not increase.

Note that from inspection of the analytic base cases,
only three types of actions are ultimately performed:
delete, move child, and construct expression. Movement
leaves the non-empty-hole count unchanged, and deletion
either leaves it unchanged or reduces it. Construction will
increase non-empty-hole count by precisely the number
of non-empty holes in the constructed expression. By
inspection, none of the expressions constructed in the
above cases contain non-empty holes, so the non-empty-
hole count can never increase.

(Note that the proof of the first clause of sensibility
established that all of our constructions remain statically
meaningful: that is, they ensure we did not introduce any
type errors unaccounted for by explicit non-empty-holes)

