
Andrew Blinn · Xiang (Kevin) Li · June Hyung (Jacob) Kim · Cyrus Omar

Statically Contextualizing
Large Language Models

with Typed Holes

OOPSLA24

University of Michigan ￼1

Future of Programming Lab

2

Problem:
LLMs often produce broken code, sometimes due to lack of appropriate context. 
How can we best proactively provide context to inform code completions?

3

Problem:

Our Approach:

A conversation between programmer, language server, and language model,  
using typed holes to bridge cursor-local and repository-wide semantic information

LLMs often produce broken code, sometimes due to lack of appropriate context. 
How can we best proactively provide context to inform code completions?

4

Problem:

Our Approach:

A conversation between programmer, language server, and language model,  
using typed holes to bridge cursor-local and repository-wide semantic information

Our Evaluation:
We implemented and evaluated our method in Hazel, our lab’s typed 
functional programming language and live program sketching environment 
 
We (partially) reproduced our method and results in TypeScript

LLMs often produce broken code, sometimes due to lack of appropriate context. 
How can we best proactively provide context to inform code completions?

5

DEMO

DEMO

6

Contextualizing
Context

MOTIVATION

7

Complete this program sketch

8

Prompting an LLM is like
lightning onboarding

9

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

10

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

11

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

12

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

13

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

[-0.24, 0.34, …]

[0.13, 0.44, …]

[0.74, 0.49, …]

[-0.84, 0.32, …]

[0.92, 0.64, …]

[0.04, 0.34, …]

[-0.24, -0.99, …]

[0.67, 0.43, …]

[0.27, 0.43, …]

14

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

15

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

16

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

17

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

18

Contextualization
Strategies

• Text window

• Vector Retrieval

• Repository-level

19

Static Contextualization
with Typed Holes

OUR APPROACH

20

Static

21

22

Static

23

Static

24

Static

25

Static

26

Static

27

Static

28

Static

Codebase

29

30

Program Sketch:

Typed

31

Program Sketch:

32

Program Sketch:

33

Expected Type

Typing 
Context

Program Sketch:

34

Program

Relevant Types:

35

Program

Relevant Types:

36

Relevant Types:

Program

37

Relevant Types:

Program

38

Relevant Types:

Program

39

Relevant Types:

Program

40

Relevant Types:

Program

41

Relevant Types:

Program

42

Relevant Types:

Program

43

Relevant

Program

44

Relevant

Relevant Headers:

Program

45

Relevant

Relevant Headers:

Program

46

Relevant

Relevant Headers:

Program

47

Relevant

Relevant Headers:

Program

48

Relevant

Relevant Headers:

Program

49

Relevant

Relevant Headers:

Program

50

Relevant

Relevant Headers:

Program

51

Relevant

Relevant Headers:

Program

52

Relevant

Relevant Headers:

Program

53

Relevant

Relevant Headers:

Program

54

Relevant

Relevant Headers:

Program

55

Relevant

Relevant Headers:

Program

56

Relevant

Relevant Headers:

Program

57

Relevant Types:

Relevant Headers:

Expected Type:

Program Sketch:

58

Relevant

Relevant

Expected

Program

59

60

Evaluation
Design

Evaluation
Problems with existing evals

• Standard evals generally consist of single-file tasks which are low-context 
(e.g. HumanEval, EvalPlus, LiveCodeBench)

• Repo-level evals tend to be language exclusive (often focusing on dynamic
langs like Python), and focus on syntactic rather than semantic (unit) testing 
(e.g. RepoEval, RepoBench, CrossCodeEval)

61

MVUBench
Model-View-Update Web Apps

• New suite of small-but-full applications developed from scratch

• Minimal external dependencies (easy to port across languages)

• Many domain-specific data types defined across different files

62

Evaluation
Results

63

Results: Hazel + GPT-4

64

Results: Hazel + GPT-4

65

Results: Hazel + GPT-4

66

Results: Hazel + GPT-4 vs Baselines

67

Results: Hazel + GPT-4 vs Baselines

68

Results: Hazel + GPT-4 vs Baselines

69

Results: Typescript + GPT-4

Hazel GPT-4

70

Results: Typescript + GPT4

Hazel GPT-4

71

• See paper for more results, including re-running the GPT-4 experiments 
using the open source StarCoder2-15B LLM

ChatLSP??

72

ChatLSP??

73

Talk to Jacob
TypeScript Static Contextualization, 
VSCode Extension

Related Work
Repository-level: 
RepoCoder (Zhang et al. EMNLP23)  
CoCoMIC (Ding et al. LREC-COLING 2024)  
Repo-Level Prompt Gen 
(Shrivastava et al. ICML23)  
 
(with emphasis on) Semantic Context: 
STALL+ (Liu et al. 2024)  
RLCoder (Wang et al. 2024)  
Better Context Makes Better Code Language
Models (Pei et al. AAAI23) 
CodeTrek (Pashakhanloo et al. ICLR22)  
Dehallucinator (Eghbali et al. 2024)  
Copiloting the Copilots 
(Wei et al, ESEC/FSE 2023)  
IDECoder (Li et al. LLM4Code24)

 
74

AutoCodeRover (Zhang et al. 2024) 
Private-library-oriented code generation with LLMs
(Zan et al. 2023) 
 
Contextualizing Proofs: Towards Neural
Synthesis for SMT-Assisted Proof-Oriented
Programming (Chakraborty et al. ICSE2024)  
 
Program Repair / Error Correction: The Fact
Selection Problem in LLM-Based Program Repair
(Parasaram et al. 2024) 
Repair is nearly generation (Joshi et al. AAAI’23)  
 
And in industry: 
Sourcegraph Cody, Cursor, Zed, Aider

Conclusion & Future Directions

75

• (In)human factors: When considering IDE features for LLMs, we’ve found it useful to
consider how they would play out for humans. Where does this framing work/fail?

• LLMs need IDEs, too: Giving models access to a full TUI (Text User Interface) 
version of Hazel; fine-tuning models on Hazel user edit actions histories

• Scaffolding and refining complex code changes using type-driven development and 
semantic edit actions (leveraging explicit programming strategies ala LaToza)

Thanks
for
Listening!

Future of Programming Lab: fplab.mplse.org andrewblinn.com

https://arxiv.org/search/cs?searchtype=author&query=LaToza,+T+D

