
Statically Contextualizing Large Language Models with
Typed Holes
ANDREW BLINN, University of Michigan, USA
XIANG LI, University of Michigan, USA
JUNE HYUNG KIM, University of Michigan, USA
CYRUS OMAR, University of Michigan, USA

Large language models (LLMs) have reshaped the landscape of program synthesis. However, contemporary
LLM-based code completion systems often hallucinate broken code because they lack appropriate code context,
particularly when working with definitions that are neither in the training data nor near the cursor. This
paper demonstrates that tighter integration with the type and binding structure of the programming language
in use, as exposed by its language server, can help address this contextualization problem in a token-efficient
manner. In short, we contend that AIs need IDEs, too! In particular, we integrate LLM code generation into
the Hazel live program sketching environment. The Hazel Language Server is able to identify the type and
typing context of the hole that the programmer is filling, with Hazel’s total syntax and type error correction
ensuring that a meaningful program sketch is available whenever the developer requests a completion. This
allows the system to prompt the LLM with codebase-wide contextual information that is not lexically local
to the cursor, nor necessarily in the same file, but that is likely to be semantically local to the developer’s
goal. Completions synthesized by the LLM are then iteratively refined via further dialog with the language
server, which provides error localization and error messages. To evaluate these techniques, we introduce
MVUBench, a dataset of model-view-update (MVU) web applications with accompanying unit tests that have
been written from scratch to avoid data contamination, and that can easily be ported to new languages because
they do not have large external library dependencies. These applications serve as challenge problems due to
their extensive reliance on application-specific data structures. Through an ablation study, we examine the
impact of contextualization with type definitions, function headers, and errors messages, individually and in
combination. We find that contextualization with type definitions is particularly impactful. After introducing
our ideas in the context of Hazel, a low-resource language, we duplicate our techniques and port MVUBench
to TypeScript in order to validate the applicability of these methods to higher-resource mainstream languages.
Finally, we outline ChatLSP, a conservative extension to the Language Server Protocol (LSP) that language
servers can implement to expose capabilities that AI code completion systems of various designs can use to
incorporate static context when generating prompts for an LLM.

CCS Concepts: • Software and its engineering → Software creation and management; • Theory of
computation → Type structures.

Additional Key Words and Phrases: Large Language Models, Program Synthesis, Program Repair

ACM Reference Format:
Andrew Blinn, Xiang Li, June Hyung Kim, and Cyrus Omar. 2024. Statically Contextualizing Large Language
Models with Typed Holes. Proc. ACM Program. Lang. 8, OOPSLA2, Article 288 (October 2024), 31 pages.
https://doi.org/10.1145/3689728

Authors’ Contact Information: Andrew Blinn, University of Michigan, Ann Arbor, USA, blinnand@umich.edu; Xiang Li,
University of Michigan, Ann Arbor, USA, xkevli@umich.edu; June Hyung Kim, University of Michigan, Ann Arbor, USA,
jpoly@umich.edu; Cyrus Omar, University of Michigan, Ann Arbor, USA, comar@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART288
https://doi.org/10.1145/3689728

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 288. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0001-6938-7379
HTTPS://ORCID.ORG/0009-0005-6860-039X
HTTPS://ORCID.ORG/0009-0005-0820-9532
HTTPS://ORCID.ORG/0000-0003-4502-7971
https://doi.org/10.1145/3689728
https://orcid.org/0000-0001-6938-7379
https://orcid.org/0009-0005-6860-039X
https://orcid.org/0009-0005-0820-9532
https://orcid.org/0000-0003-4502-7971
https://doi.org/10.1145/3689728



	Abstract
	1 Introduction
	1.1 Evaluation Overview

	2 Static Retrieval and Error Correction in the Hazel Assistant
	2.1 Hazel
	2.2 Hazel Assistant
	2.3 The Hazel Assistant Trialogue
	2.4 System Message: The Hazel Crash Course
	2.5 Type Retrieval
	2.6 Relevant Headers from the Typing Context
	2.7 Syntactic and Semantic Error Correction
	2.8 Experimental Evaluation
	2.9 Hazel GPT-4 Results
	2.10 Hazel StarCoder2-15B Results

	3 Static Retrieval in TypeScript
	3.1 TypeScript Methodology
	3.2 TypeScript GPT-4 Results
	3.3 TypeScript StarCoder2-15B Results

	4 Threats to Validity
	5 ChatLSP
	5.1 ChatLSP API Methods
	5.2 Static Contextualization Language Server API

	6 Related work
	7 Discussion and Conclusion
	8 Data Availability
	9 Acknowledgements
	References

